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Synopsis 

Dynamic shear experiments in the linear range of deformation and extensional tests at  constant 
strain rate have been carried out on a linear low-density polyethylene (LLDPE) melt and on two 
branched low-density polyethylene (LDPE) melts with different amounts of long-chain branching. 
Both the dynamic shear moduli and the tensile stress obey the time-temperature superposition 
principle. A simple model based on a n o n f f i e  generalized Maxwell model with two relaxation 
times is proposed to  describe the rheological behavior in elongation of these melts. Close 
agreement between the model and the experimental data can be obtained by adjusting the two 
relaxation times and the “slip parameter” of entanglements. The variations of these parameters 
with strain rate and their relationship with molecular structure are discussed. 

INTRODUCTION 

Among all polyolehes, low-density polyethylene holds a prominent in- 
dustrial position. On account of its diversity (it may be used in film extrusion, 
foam extrusion, wire coating, etc.) different grades have been developed with 
their rheological behavior adapted to the different processing methods. 

It is well established’ that molecular weight distribution and extent of 
long-chain branching are the determining parameters in the rheology of 
polyethylene melts. Over the past few years, a new variety of low-density 
polyethylene, linear low-density polyethylene (LLDPE), has begun to compete 
with low-density polyethylene polymerized by free radical mechanism (LDPE) 
in the field of films, mainly due to desirable mechanical properties of the end 
product and an improved processability of the polymer melt. From a molecu- 
lar point of view, LLDPE is a linear molecule with a great number of short 
branches, contrary to LDPE which is constituted of long-chain branched 
molecules. It could be shown that the rheological behavior in shear of LLDPE 
is fairly different from that of LDPE.2*3 

However, shear rheology and linear viscoelastic properties are often inade- 
quate to predict the processability of a polymer melt. In many processes, the 
deformation experienced by the material includes a large elongational compo- 
nent. This explains the growing interest for elongational viscosity measure- 
ments of polymer  melt^.^-^ Generally, it  is difficult to determine the 
elongational rheological behavior from the shear properties7 and this has to be 
measured separately. 
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From an experimental point of view, this type of test is much more tricky to 
realize than shear measurements such as cone and plate or capillary rheome- 
try. Yet, several studies have been published and experimental data in the 
field of elongational rheology have been communicated for various LDPE and 
LLDPE 
As expected, molecular weight distribution and structure of chains, espe- 

cially the number and the length of branches, d e c t  elongational rheology as 
in shear, and notable differences in behavior of LDPE and LLDPE have been 

Further to the experimental problems arising from tensile viscosity mea- 
surements necessitating specific apparatus, molding and fastening of speci- 
mens, the lack of a simple model describing the rheology of polymer melts in 
this type of deformation renders experimental results difficult to exploit. In 
this paper, we measured both the dynamic viscoelastic properties in the linear 
range and the tensile stress-growth coefficient at different strain rates for 
three LDPE samples: one LLDPE and two LDPE samples branched to 
different extents. We then tried to account for the elongational rheology 
results with a rather simple model bas& on a generalized Maxwell model with 
two relaxation times. 

obser~ed.~. 

EXPERIMENTAL METHODS 

Polymer Samples 

Three polyethylene samples from the CdF Chimie Company have been 
studied; their molecular characteristics are shown in Table I. The first two 
polymers are LDPE samples called LD1 and LD2 with different molecular 
weight distribution and long-chain branching extent. The LD2 polymer has a 
higher polydispersity than the LD1 sample, whereas the long-chain branching 
of LD2 is lower than that of LD1. The third sample, LL1, is a LLDPE with an 
average molecular weight close to that of LD2. 

Dynamic Shear Rheology 

The dynamic moduli and viscosities of these three samples have been 
measured as a function of frequency at two temperatures (150°C and 180°C) 
with a Rheometrics RMS 605 mechanical spectrometer. The amplitude of the 
sinusoidal strain was small enough (< 5%) so that the behavior of the melt 
was linear viscoelastic. 

The dynamic moduli G’ and G” have been plotted as a function of 
frequency at 150°C in Figure 1. The corresponding curves at  180°C can be 
exactly superimposed on to that obtained at  150°C by a simple translation on 
the frequency axis. The value of the shift factor log(+) is shown in Table I1 
for the three samples. 

Figure 2 shows the so-called “Cole-Cole diagrams” of the complex viscosity 
(i.e., q” as a function of q’). For the LD1 and LL1 samples, the extrapolation 
of the curves allows a precise determination of their intersection with the q’ 
axis and therefore of the zero shear viscosity of the melt. For the LD2 sample, 
this extrapolation is more difficult; nevertheless, it  allows an approximate 
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TABLE I 
Melt Flow Index (MFI), Molecular Weight Distribution and Long-Chain Branching Extent 

(Number of Ternary Carbon Atoms for 1000 Carbons) of the Three Melts Studied 

Long-chain 
MFI M" Mw M J M n  branching 

LD1 1.05 23,000 122,000 5.4 5.3 
LD2 0.16 20,000 146,000 7.2 2.5 
LL1 0.9 28,000 146,000 5.3 17.7 

- 3  - 2  - 1  0 1 2 

loq ( w )  (sec-'1 
Fig. 1. Storage modulus G' (---) and loss modulus G" (-) for the three melts at 150OC: 

(o,.) LL1; (O,.) LD1; (A,A) LD2. 

estimation of qo. Figure 3 represents the variations of the dynamic viscosity 
q* = ( T ' ~  + q''2)0.5 as a function of frequency for the three melts. 

The values of zero-shear viscosity at 1 5 O O C  as well as the values of q* at 
the Same temperature for several values of the frequency are shown in Table 
11. As will be seen later, these data will be useful for the correlation of tensile 
stress-growth measurement with the linear viscoelastic measurements. 

Elongational Rheology 

The deformation of the polymer melt specimen should be regular during the 
carrying out of a tensile stress-growth measurement. This leads to the fabrica- 
tion of perfectly homogeneous specimens that are free of any residual orienta- 
tion at the end of the molding process. Compression molding of pellets does 
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TABLE I1 
Thermal Shift Factor log(+) Between 150 and 180°C; Zero Shear Viscosity at 15OOC and 
Dynamic Viscosity in Pa . s at the Same Temperature for Different Values of the Frequency 
( w  in rad/s) 

90 9* 8* 9* 9* 9* ?* 
log(a,) P a .  s (.03) (.055) (.11) (.22) (.52) (1) 

LD1 .44 5.834 4.434 3.734 2.334 1.7E4 
LD2 .47 6.OE5 1.7E5 1.3E5 9.734 7.1E4 4.334 2.934 
LL1 .27 2.534 2.334 2.OE4 1.8E4 

' 0 5 2  

z lo5 L 10s 6 lo5 

L lo4 
7' ( Pa.s 1 

Fig. 2. Cole-Cole plots of the complex viscosity for the three samples: (0) LL1; (m) LD1 
(A) LD2. Extrapolation of the experimental data with a circular regremion (----) for the de 
termination of the zero shear viscosity. 

not satisfy the first requirement of homogeneity and leads to an irregultu 
deformation of the melts. Therefore, the transfer molding technique was used! 
which gives a satisfactory homogeneization of the polymer and does not 
require large amounts of material. However, this method does not allow a 
sufficient relaxation of the internal stresses due to the high cooling rate in the 
mold. The specimens obtained in that way deform as won as they are heated 
above the melting temperature. Here again, the deformation during the 
extensional test is irregular and leads to useless results. 

In order to relax this residual orientation, the molded specimens had to be 
annealed above the melting temperature with the device shown in Figure 4. 
The transfer-molded parallelepipeds are placed between two iron plates pressed 
together with springs. The whole device is then immerged in a silicone oil bath 
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Fig. 3. 

(A) LD2. 
Dynamic viscosity $* = (q'2 + f2)0.5 as a function of frequency: (0) LL1; (M) LD1; 

a e 
Fig. 4. Experimental device for annealing the transfer molded specimens above the melting 

temperature (a) transfer-molded specimen, (b) springs, (c) plates, (d) 0-Mgs, (e) molten specimen 
during annealing. 
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at 180OC. Once the polymer melts, the plates squeeze the specimen and come 
in contact with small O-rings yielding a constant final thickness of the 
specimen. Then one only has to wait for a time long enough compared to the 
terminal relaxation time of the melt (about 10 to 20 minutes for the three 
LDPE samples under consideration). Finally the specimens used for the 
elongation rheology measurements are machined after cooling in the polymer 
plates thus obtained. 

The elongational measurements have been carried out with an apparatus 
designed in this laboratory, of which a detailed description has been pub- 
lished.l0A device for fastening the melt specimens made of small self-blocking 
clamps has been realized and has proved to be particularly convenient for 
polyolefine melts as it avoids all gluing problems. This extensional rheometer 
is now manufactured by the METRAVIB R.D.S Company (Ecully, France). 

Figure 5 shows the tensile stress-growth coefficient of the three melts as a 
function of time for various strain rates and at  150 O C. One observes that only 
LL1 melt reaches a steady-state regime for the lowest strain rate. If the value 
of the steady-state tensile viscosity which can be defined under these condi- 
tions (qE(i)  = 8.104 Pa . s), is compared to the zero shear viscosity qo of the 
LL1 melt at the same temperature (cf. Table II), it  can be observed that the 
value ofqE is equal to about three times that of qo, which amounts to say 
that Trouton's relation is verified with a good appro~imation.~> l1 

In order to check the reliability of our results, we carried out a second series 
of measurements at a higher temperature (2' = 180°C). We then compared for 

A1 I I 
'-1 0 1 2 

log ( t )  ( s e d  
Fig. 5. Tensile stress-growth coefficient as a function of time at 150OC and different strain 

rates: (-) U 1 :  (0) 0.1 s-'; (0) 1 s-'; (-------) LDl: (m) 0.05 s-'; (0) 1 s-'; (-----) LD2: (A) .05 
S-'; (A) .1 S-'; (V) 1 S-'. 



STRESS MEASUREMENTS OF POLYETHYLENE MELTS 295 

t / a T  (sec.1 
Fig. 6. Tensile stress versus reduced time for two different temperatures: (0, 0 )  

LL1: 
(0) T = 150°C, i = .1 s-'; (0) T = 180°C, i = .19 s-'; (.,a) LD1: (U) T = 15OoC, i = .1 s-'; 
(0) T = 180°C, i = .27 s-'. 

the three polymers the tensile stress for two tests run at  150°C and 180°C 
respectively with strain rates i, and io/uT where uT is the thermal shift 
factor determined from the linear viscoelasticity measurements (see Table 11). 
Figures 6 and 7 represent the tensile stress as a function of reduced time for 
five pairs of comparable tests on the three melts. Our extensional rheology 
results agree with those of Munstedt and Laun on a branched LDPE melt" 
and our previous study on a polystyrene melt;" they show that the time- 
temperature equivalence principle is verified independently of the structure of 
the polymer (i.e., whether it is a short- or long-chain branching). 

PROPOSED MODEL 

The so-called quasilinear viscoelastic models form a class of rheological 
models which have been used successfully to describe the rheological behavior 
of polymer melts. Their general expression is: 

a ( t )  = J' m(t  - t ' )St( t ' )  dt' (1) 
-m 

Where a is the stress tensor and S a nonlinear strain tensor. The quantity 
m is the memory function which can be obtained from linear viscoelastic 
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10 20 30  4 0  
t / a T  Isec.) 

Fig. 7. Tensile stress versus reduced time for the LD2 melt at 150°C (.,.,A) and lW0C 
(o,o,A): (.) i = .05 s-'; (0) i = .la s-l; (0) i = .I s-'; (0) i = .3 s-'; (A) i = .2 s-'; (A) 

i = .59 s-1. 

measurements. If G is the relaxation modulus of the material, we have: 

Depending on the choice of the strain tensor S, different types of models 
ctin be obtained. If one considers the Finger strain tensor C-', the rubberlike 
liquid model of Lodge is obtained by taking S = (C-' - I) where I is the 
identity tensor. More complex choices for S lead, for example to the Wagner 
model' as well as to the Doi-Edwards model.13 

Another alternative developed by T~choegl'~ and Johnson and Segalman15 
consists in asmuning that the deformation of the network of junction points 
between the chains (i.e., entanglements) is not f f i e  and to introduce a slip 
parameter a equal to 1 in the f f i e  assumption, which is generally between 0 
and 1 for polymeric fluids. It can then be shown that in the case of a uniaxial 
extensional flow, the corresponding strain tensor S can be written as:'6 

s = a-'(C-" - I) (3) 

where C-' is the Finger strain tensor. In the case where a discrete relaxation 
spectrum is considered, the memory function becomes: 

cii 
m ( s )  = C -exp( - s / ~ ~ )  

i 'Ti 
(4) 
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where the are the relaxation times. In some studies17 the parameters Gi and 
7i have been determined in order to match the variations of the dynamic 
moduli with frequency. A precise enough adjustment usually requires between 
five and ten relaxation times. 

Together with expression (4) of the memory function and the Finger strain 
tensor, the tensile stress may be easily calculated for a constant strain rate 
extensional test according to Eq. (l)." 

If expression (3) is taken as the strain measure, one obtains the following 
relation for the true tensile stress measured during uniaxial extension at 
constant strain rate (a( t )  = all( t )  - ~ ~ ~ ( t ) ) :  l9 

iGpi  
a ( t )  = 2c [I - exp( - (1 - 2ui+ /~~) ]  

1 - 2ai7i 

iGi5 +c 
c 1 + Ui7,  

[ 1 - exp( - (1 + ~ i r ~ ) t / ~ ~ ) ]  

In a recent study on polystyrene melts,20 we have shown that the tensile 
stress a( t )  for a constant strain rate experiment can be approximated by the 
expression: 

where a,( t, i) reaches a steady-state value a,( i) after a relatively short time 
and where A, is the recoverable strain of the sample. Furthermore, it could 
also be shown that as a first approximation, the value of a,(i) can be 
connected with polymer shear viscosity by the simple relation: 

If we further assume that the first Cox-Men relation is verified, that is, the 
value of the shear viscosity q(3)  is close to that of the dynamic viscosity 
q*(w)  for w = q,21,n*23 relation (7) can be rewritten in the form: 

a,( i) - 3 * i * q*( o)lo,i (8 )  

Taking into account the two contributions to the stress arising in Eq. (6), 
we propose to describe the extensional rheological behaviour of the LDPE 
melts by a Maxwell model with two relaxation times. 

Since the stress a,(t, i) reaches a constant value a,(<) and considering 
relation (8), we propose to describe it as a function of time by the following 
expression equivalent to a linear Maxwell model: 

a,( t )  = 3i - q*( w ) - [ 1 - exp( - t / ~ , , ) ]  I o=g (9) 

q * ( w )  being the dynamic viscosity at w = i. 
The second term of Eq. (6) is similar to a rubber elasticity term and we 

hypothesize that it can be related to the deformation of the entanglement 
network. 
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For the sake of simplicity, we will try to fit this contribution to the stress 
by a non linear Maxwell model with only one relaxation time and therefore 
express it similarly to relation (5). 

G - 7 -  
u2( t )  = 2 i  { 1 - exp[ - (1 - 2a i r ) t / r ]  } 

1 - 2air 

G . 7  
1 + air +i- (1 - exp[-(1 + a i r ) t / r ] }  

If i tends to 0 and t tends to infinity in the sum a,( t) + u2( t) one obtains a 
further condition for the parameters of the model by writing Trouton's 
relation corresponding to the low strain-rate linear viscoelastic behavior: 

where q,, is zero shear viscosity. 

7.5 Id 

2.5 10" 

0 2 6 8 10 
t (sec.  1 

Fig. 8. Tensile stress as a function of time for the LL1 melt at 15OOC and three different 
strain rates: (A) 1 s-l; (m) .5 s-'; (0) .11 s-'. (-) experimental curves; (A,B, 0) calculated stress 
according to Eq. (12) with parameters a, T,, and T from Table 111. 



STRESS MEASUREMENTS OF POLYETHYLENE MELTS 299 

2.1c 
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0 2 4 6 8 10 
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Fig. 9. Same representation than in Fig. 8 for the LD1 melt: (A) 1 s-'; (W) .5 s-'; (0) . l l  s-'. 

S 
3 6 1 0  
a - 
b 

4 105 

2 10' 

5 10 15 20 

t ( sec.1 
Fig. 10. Same representation than in Fig. 8 for the LD2 melt: (A) 1 s-'; (W) .5 s- '; (0) . l l  s-'. 
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TABLE I11 
Calculated Values of Parameters a, T ~ ,  T ,  G and Go of the Model, 

Giving the Best Fit of the Experimental Curves 

i (s-1) a 7 (4 G (Pa) 70 (s) Go (Pa) 

LD1 .055 1 21 6.632 2.8 1.6E4 
.ll .86 15 1.4E3 2.5 1.5E4 
.52 .74 8.3 4.233 1.1 2.OE4 

1 .74 6.5 6.233 .6 3.OE4 
LD2 .03 .67 110 3.933 15 l.lE4 

.055 .66 100 4.733 10 1.3E4 

.ll .73 80 6.333 6 1.6E4 

.22 .72 75 7.OE3 3 2.434 

.52 .75 39 1.4E4 1.4 3.1E4 
1 .75 31 1.8E4 .6 4.934 

LL1 .ll .76 13 1.6E2 1.1 2.1E4 
.52 .53 4.8 l.lE3 .45 4.534 

1 .47 2.8 2.733 .35 5.1E4 

The final expression for the stress can therefore be written: 

i 
[I - exp( -(I - 2 a i r ) t / r ) ]  * (  1 - 2air 

.? 

1 + air 
+- [I - exp(-(1 + u i r ) t / r ) ]  

Since the values of qo and q* (w)  can be determined from dynamic measure- 
ments in the linear range, only three independent parameters remain in Eq. 
(12): the two relaxation times ro and r ,  and the slip parameter a. 

A least-square regression program has been used to determine these param- 
eters from the experimental curves. The calculation has been carried out by a 
succession of approximations on ten experimental points chosen on the curve. 
As can be seen in Figures 8, 9, and 10, the model proposed fits the 

experimental stress-growth curves for three samples and for various strain 
rates. In Table 111, we have listed the calculated values of the three parame- 
ters a, r and ro which lead to the best agreement between the model and the 
experiment. 

DISCUSSION 

Parameter T,, 

Relaxation time T~ related to u1 contribution to the stress is on the whole 
smaller than the second relaxation time by a factor of 10. It can also be 
noticed that ro decreases if the strain rate is increased and that for most tests 
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on the branched melts (LD1 and LD2), the product i 1 T~ remains approxi- 
mately constant, its value being about 0.6; this indicates that u1 contribution 
to the stress is associated to short time relaxation processes which depend on 
deformation rather than on the strain rate. 

Parameter 7 

In Lodge’s t h e ~ r y , ’ ~ * ~ ~  one considers segments of chains between two en- 
tanglements and with a number j of monomer units. If the disentanglement 
probability of these segments is 1 /~*  and their rate of formation GJri 
expression (4) of the memory function is obtained. 

In our approach, considering only one relaxation time in expression 10 of 
u2(t), leads to the assumption that all segments between entanglements have 
the same length. This is obviously only a first approximation and the further 
interpretation of a, T, and G and their variation with strain rate will have 
only a qualitative meaning. 

Generally, the quantity G, which has the dimension of a modulus and is 
related to the number of segments of the entanglement network, increases if 
the strain rate is increased, whereas the relaxation time decreases under the 
same conditions. 

A possible interpretation of these variations with strain rate consists in 
assuming that the number of entanglements which effectively contribute to 
the stress depends on the strain rate and increases if the latter is increased. A t  
the same time, the average length of the chain segments between these 
entanglements decreases, and so does their disentanglement time. 

A comparison of the behavior of the three samples shows that the values of 
G and 7 are higher for the branched polymers at  the same strain rate. From 
the previous observations, it  seems that the influence of the long chain 
branching is to increase the number of effective entanglements as well as their 
life-time. 

It can be seen that this effect is more perceptible for the LD2 melt which 
has an average molecular weight comparable to that of the LD1 melt but 
which has a lower long chain branching extent and therefore a higher average 
length of branches. This would mean that for branched polymers, the length 
of the branches plays an important role on the extensional rheological be- 
haviour by decreasing significantly the disentanglement probability of the 
C h a i n s .  

Parameter a 

The so-called slip parameter of entanglements introduced in the model, the 
value of which lies between 0 and 1, accounts for nonf f i e  deformation of the 
entanglement network. 

It can be seen that for samples LL1 and LD1, the value of a determined by 
fitting the experimental curves decreases if the strain rate is increased, 
whereas it is almost independent of strain rate for the sample LD2 (a = .7). 

A qualitative interpretation of this result can be given by saying that if the 
strain rate increases, the number of entanglements taken into account in the 
model increases and their average relaxation time decreases. As a whole, these 
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entanglements become weaker and it can reasonably be assumed that the 
deformation of their network becomes less affine. 

If samples LL1 and LD1 are compared, it can be seen that the long-chain 
branching increases the value of a for the same strain rate and, therefore, the 
slipping of entanglements decreases. The fact that a is almost strain rate 
independent for the LD2 sample is more difficult to explain. The relatively 
small value of a does not seem to be in agreement with the high values of the 
relaxation times. It seems likely that the influence of the number of long-chain 
branches and of their length is not the same on the slip parameter and on the 
relaxation times. 

CONCLUSION 

In this study we were able to show that in a strain rate range between .03 
s-l and 1 s-l and for Hencky strains up to 2.5, the tensile stress-growth 
coefficient of linear and branched LDPE melts could be described as a 
function of time by a simple model with two relaxation times. 

For this purpose it has been assumed that the tensile stress arises from two 
contributions. The first one can be fitted by a linear Maxwell model in which 
the dynamic viscosity of the polymer occurs. The second one is ascribed to the 
entanglement network and can be fitted by a nonlinear Maxwell model which 
can account for a nonaffine deformation of the junction points between the 
chains. The three adjustable parameters of the model are the two relaxation 
times and the slip parameter of entanglements. 

The effect of the structure of the chains on the relaxation times seems to be 
consistent but a better understanding of the variations of the slip parameter 
would require more experiments on polymers with a better controlled molecu- 
lar weight distribution and structure (monodisperse star or comb-shaped 
molecules). These would presumably allow better separation of the respective 
influence of number and length of branches. 

The authors would like to thank the CDF Chimie Company, Mazingarbe, France, for financial 
support and for providing the samples. 
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